Leetcode-64
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
|
solution
解法为简单的动态规划,只要找到比较该元素,上方和左方的值的最小值,然后与该值相加,就可以得到解
1 2 3 4 5 6 7 8 9 10 11 12
| class Solution { public int minPathSum(int[][] grid) { for(int i=1; i<grid.length; i++) grid[i][0] += grid[i-1][0]; for(int j=1; j<grid[0].length; j++) grid[0][j] += grid[0][j-1]; for (int i=1; i<grid.length; i++) { for (int j=1; j<grid[0].length; j++) { grid[i][j] = Math.min(grid[i][j-1], grid[i-1][j]) + grid[i][j]; } } return grid[grid.length-1][grid[0].length-1]; } }
|