Problem 96
Given n, how many structurally unique BST’s (binary search trees) that store values 1 … n?
Example:
1 | Input: 3 |
Solution
题目其实相对比较简单,给出1~n,给出能够成的BST的数目,题目一开始的想法是用1~n去生成BST,看一下有多少种情况,然后做了很多无用功=.=
越写越不对劲后来查了一下,这道题是有数学规律的
BST有几个特点
- 中序遍历依次增(大于等于)
- 左右自述也是BST(recursion)
所以在i作为根节点时,左子树i-1个节点,右子树n-i个节点
数学的思想在于唯一二叉树的个数为左子树结点的个数乘以右子树的个数。而根节点可以从1到n 中选择,所以有
for(int i=1;i<=n;++i)
sum+=numTrees(i-1)*numTrees(n-i);
再加上边际控制n<=1–>sum=1
就有了解题的代码:
1 | class Solution { |
Solution 95 Unique Binary Search Trees II
万幸,自己折腾的生成BST的代码没白写
Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1 … n.
Example:
1 | Input: 3 |
看题目是前序遍历,我们从上向下查找,外面一层大循环遍历根节点
for(int i=start ;i<=end;i++){}
确定了i节点后可以通过递归写出根节点i的情况下的左右子树
List
leftChild = recursion(start, i - 1); List
rightChild = recursion(i + 1, end);
然后遍历左右子树的每个元素,两层for循环嵌套
for(TreeNode left : leftChild) {
for(TreeNode right : rightChild) {
TreeNode root = new TreeNode(i);
root.left = left;
root.right = right;
res.add(root);
}
}
得到最后的res进行返回,以及处理一下start>end的边际条件就完成了
1 | /** |
问题当时卡在
List
List
当然采用recursion虽然简洁易懂,但两条题目的复杂度都相对较高,是递归的压栈造成的,很多可能相同点的地方可能计算了两遍,导致了两道题目都是打败了5%的solution,当然我们可以通过dp(来自LeetCode)的方式来进行完成
1 | class Solution { |